If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32y^2-24y-48=0
a = 32; b = -24; c = -48;
Δ = b2-4ac
Δ = -242-4·32·(-48)
Δ = 6720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6720}=\sqrt{64*105}=\sqrt{64}*\sqrt{105}=8\sqrt{105}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-8\sqrt{105}}{2*32}=\frac{24-8\sqrt{105}}{64} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+8\sqrt{105}}{2*32}=\frac{24+8\sqrt{105}}{64} $
| C=5/9(-40c-32) | | y+7•3=10 | | 8a3+6a3=26 | | 2x/5-6/5=5 | | R=(3y-2)° | | |3x+2|=|5x-4| | | 47x=(-19) | | (5x-2)+3x+4)=90 | | -2+a=-a+2 | | 7x+9+45=17x-6 | | 144+6x+12x=360 | | 2^(x-2)=11 | | 15-w=9 | | 7+x+124=10x+23 | | -1/4x^2+3=19 | | 6(2x+9)=150 | | 5.1=8.3-0.4x | | 103+140+t=360 | | 7+x+124=10x+3 | | 2(x+6)−3=19 | | Xx2+5=17 | | 4(3+2m)=6m-10 | | -u+71=172 | | 7x-6+96=18x+2 | | 45-2x+5=4x-15+25 | | -9/x=11 | | -v+181=18 | | 4x+14+45=11x-4 | | a/2-2=5 | | 7y+4=10+y | | 1/2(12k=-6) | | w47w=16 |